Page 619 - MDP2020-1
P. 619
················································································ 명장양성프로젝트 【MDP】 과제발표회 자료집 Ⅰ | 613
for idex, categorie in enumerate(categories):
label = [0 for i in range(num_classes)]
label[idex] = 1
image_dir = groups_folder_path + categorie + '/'
for top, dir, f in os.walk(image_dir):
for filename in f:
print(image_dir+filename)
img = cv2.imread(image_dir+filename)
img = cv2.resize(img, None, fx=image_w/img.shape[1], fy=image_h/img.shap
e[0])
X.append(img/256)
Y.append(label)
X = np.array(X)
Y = np.array(Y)
X_train, X_test, Y_train, Y_test = train_test_split(X,Y) #train,test 파일 나눔
xy = (X_train, X_test, Y_train, Y_test)
np.save("/tmp/TT/numpy_data/img_data.npy", xy) #npy 파일 만들기
나. CNN
from keras.models import Sequential
from keras.layers import Dropout, Activation, Dense
from keras.layers import Flatten, Convolution2D, MaxPooling2D
from keras.models import load_model
import cv2
X_train, X_test, Y_train, Y_test = np.load('/tmp/TT/numpy_data/img_data.npy',allow_pickle
=True) #npy 파일 로드
model = Sequential()