Page 619 - MDP2020-1
P. 619

················································································  명장양성프로젝트  【MDP】  과제발표회  자료집  Ⅰ    |  613


            for idex, categorie in enumerate(categories):

                label = [0 for i in range(num_classes)]
                label[idex] = 1

                image_dir = groups_folder_path + categorie + '/'


                for top, dir, f in os.walk(image_dir):

                    for filename in f:

                        print(image_dir+filename)

                        img = cv2.imread(image_dir+filename)
                        img = cv2.resize(img, None, fx=image_w/img.shape[1], fy=image_h/img.shap
            e[0])

                        X.append(img/256)

                        Y.append(label)


            X = np.array(X)

            Y = np.array(Y)


            X_train, X_test, Y_train, Y_test = train_test_split(X,Y)                #train,test  파일  나눔

            xy = (X_train, X_test, Y_train, Y_test)


            np.save("/tmp/TT/numpy_data/img_data.npy", xy)                  #npy  파일  만들기





                나.  CNN

            from keras.models import Sequential
            from keras.layers import Dropout, Activation, Dense

            from keras.layers import Flatten, Convolution2D, MaxPooling2D

            from keras.models import load_model
            import cv2



            X_train, X_test, Y_train, Y_test = np.load('/tmp/TT/numpy_data/img_data.npy',allow_pickle
            =True) #npy  파일  로드


            model = Sequential()
   614   615   616   617   618   619   620   621   622   623   624